• Home
  • About
  • Contact
  • Privacy
  • Terms
  • DCMA
  • Sitemap
  • Submit
Regional Posts
No Result
View All Result
  • News
    • Sports
    • Politics
  • Business
    • Crypto
    • Marketing
  • Lifestyle
    • Entertainment
    • Fashion
    • Food
  • Tech
    • Gaming
    • Gadgets
  • Science
  • Health
  • Travel
  • World
Regional Posts
  • News
    • Sports
    • Politics
  • Business
    • Crypto
    • Marketing
  • Lifestyle
    • Entertainment
    • Fashion
    • Food
  • Tech
    • Gaming
    • Gadgets
  • Science
  • Health
  • Travel
  • World
No Result
View All Result
Regional Posts
No Result
View All Result
Home Science

Groundbreaking “Chameleon Metal” Invented That Acts Like Many Others

by Staff Writer
May 12, 2022
in Science
0
Transforming Metal
547
SHARES
3.6k
VIEWS
Share on FacebookShare on Twitter

READ ALSO

How we test, review and rate products on LiveScience

Why yawns are contagious—in all kinds of animals | Science

New discovery could improve efficiency for storing renewable energy, making carbon-free fuels, and manufacturing sustainable materials.

A team of energy researchers led by the University of Minnesota Twin Cities has developed a groundbreaking device that electronically converts one metal into behaving like another, allowing it to be used as a catalyst for speeding chemical reactions. The fabricated device, known as a “catalytic condenser,” is the first to demonstrate that alternative materials that are electronically modified to provide new properties can result in faster, more efficient chemical processing.

The invention paves the way for new catalytic technologies using non-precious metal catalysts for important applications such as storing renewable energy, making renewable fuels, and manufacturing sustainable materials.

The research is published online in JACS Au, the leading open access journal of the American Chemical Society, where it was selected as an Editor’s Choice publication. The team has a provisional patent on the device and is also working with the University of Minnesota Office of Technology Commercialization.

Catalytic Condenser Illustration

University of Minnesota researchers have invented a “catalytic condenser” that opens the door for new catalytic technologies using non-precious metal catalysts for important applications such as storing renewable energy, making renewable fuels, and manufacturing sustainable materials. Credit: Dauenhauer Group, University of Minnesota

For the last century, chemical processing has relied on the use of specific materials to promote the manufacturing of chemicals and materials we use in our daily lives. Many of these materials, including precious metals such as ruthenium, platinum, rhodium, and palladium, have distinct electronic surface properties. Because they can act as both metals and metal oxides, they are essential for controlling chemical reactions.

The general public is probably most familiar with this concept in relation to the uptick in thefts of catalytic converters on cars. Catalytic converters are valuable because of the rhodium and palladium inside them. In fact, palladium can be more expensive than gold.

These expensive materials are often in short supply around the world and have become a major barrier to advancing technology.

In order to develop this method for tuning the catalytic properties of alternative materials, the researchers relied on their knowledge of how electrons behave at surfaces. The team successfully tested a theory that adding and removing electrons to one material could turn the metal oxide into something that mimicked the properties of another.

“Atoms really do not want to change their number of electrons, but we invented the catalytic condenser device that allows us to tune the number of electrons at the surface of the catalyst,” said Paul Dauenhauer, a MacArthur Fellow and professor of chemical engineering and materials science at the University of Minnesota who led the research team. “This opens up an entirely new opportunity for controlling chemistry and making abundant materials act like precious materials.” Dauenhauer also holds the Lanny & Charlotte Schmidt Endowed Chair.

The catalytic condenser device uses a combination of nanometer films to move and stabilize electrons at the surface of the catalyst. This design has the unique mechanism of combining metals and metal oxides with graphene to enable fast electron flow with surfaces that are tunable for chemistry.

“Using various thin film technologies, we combined a nano-scale film of alumina made from low-cost abundant aluminum metal with graphene, which we were then able to tune to take on the properties of other materials,” said Tzia Ming Onn, a post-doctoral researcher at the University of Minnesota who fabricated and tested the catalytic condensers. “The substantial ability to tune the catalytic and electronic properties of the catalyst exceeded our expectations.”

The catalytic condenser design has broad utility as a platform device for a range of manufacturing applications. This versatility comes from its nanometer fabrication that incorporates graphene as an enabling component of the active surface layer. The power of the device to stabilize electrons (or the absence of electrons called “holes”) is tunable with varying composition of a strongly insulating internal layer. The device’s active layer also can incorporate any base catalyst material with additional additives, that can then be tuned to achieve the properties of expensive catalytic materials.

“We view the catalytic condenser as a platform technology that can be implemented across a host of manufacturing applications,” said Dan Frisbie, a professor and head of the University of Minnesota Department of Chemical Engineering and Materials Science and research team member. “The core design insights and novel components can be modified to almost any chemistry we can imagine.”

The team plans to continue their research on catalytic condensers by applying it to precious metals for some of the most important sustainability and environmental problems. With financial support from the U.S. Department of Energy and National Science Foundation, several parallel projects are already in progress to store renewable electricity as ammonia, manufacture the key molecules in renewable plastics, and clean gaseous waste streams.

Reference: “Alumina Graphene Catalytic Condenser for Programmable Solid Acids” by Tzia Ming Onn, Sallye R. Gathmann, Yuxin Wang, Roshan Patel, Silu Guo, Han Chen, Jimmy K. Soeherman, Phillip Christopher, Geoffrey Rojas, K. Andre Mkhoyan, Matthew Neurock, Omar A. Abdelrahman, C. Daniel Frisbie and Paul J. Dauenhauer, 7 May 2022, JACS Au.
DOI: 10.1021/jacsau.2c00114

The experimental invention of the catalytic condenser is part of a larger mission of the U.S. Department of Energy, and this work was funded by the U.S. Department of Energy, Basic Energy Sciences Catalysis program via grant #DE-SC0021163. Additional support to fabricate and characterize the catalytic condenser devices was provided by the U.S. National Science Foundation CBET-Catalysis program (Award #1937641) and the MRSEC program DMR-2011401. Funding was also provided by donors Keith and Amy Steva. Electron microscopy work was carried out in the University of Minnesota’s Characterization Facility.

Researchers from the University of Massachusetts Amherst and University of California, Santa Barbara were also involved in the study.



Source by scitechdaily.com

Share219Tweet137
Previous Post

Why the Senate voted on an abortion rights bill that was guaranteed to fail

Next Post

Biden’s disinformation chief wants to edit people’s tweets

Related Posts

How we test, review and rate products on LiveScience
Science

How we test, review and rate products on LiveScience

May 25, 2022
United Airlines to Launch Flights to Amman, Jordan
Science

Why yawns are contagious—in all kinds of animals | Science

May 25, 2022
Citizen Science Salon icon
Science

Citizen Science Month 2022: Turning Curiosity Into Impact Around the Country

May 24, 2022
People With Insomnia at Greater Risk of Cognitive Problems Later, Study Finds
Science

People With Insomnia at Greater Risk of Cognitive Problems Later, Study Finds

May 24, 2022
Jackdaws ‘democratically’ decide when to take flight as a flock
Science

Jackdaws ‘democratically’ decide when to take flight as a flock

May 24, 2022
California Faces Summer Blackouts from Climate Extremes
Science

California Faces Summer Blackouts from Climate Extremes

May 23, 2022

POPULAR NEWS

5 Email Templates For a Performance Management Process

5 Email Templates For a Performance Management Process

November 1, 2021
Florida Tik Tok star Damaury Mikula, 18, was arrested on Friday after he led Pasco County Police on a 100-mile-per-hour high speed chase

Florida TikTok star, 18, is arrested provoking police into high speed chase

November 1, 2021
The Best New Podcasts Coming in 2022

The Best New Podcasts Coming in 2022

December 30, 2021
sex

How To Increase Male And Female Sexual Desire

November 26, 2021
cyberbullying legal consequences

5 Ways to Report Cyberbullying

June 18, 2021

EDITOR'S PICK

Best Cities in Australia - Melbourne

Australian Visa Types Explained – Travel Dudes

November 27, 2021
Razor Icon electric scooter

Razor Icon electric scooter top speed 29 km/h range 18m

March 3, 2022
Snapshots Of Weather Extremes Don’t Paint The Full Picture Of Climate Change

Snapshots Of Weather Extremes Don’t Paint The Full Picture Of Climate Change

February 15, 2022
Elon Musk

Elon Musk will buy Twitter in $44 billion deal, promises to add features and defeat spam bots

April 26, 2022

About

REGIONAL POSTS Web Magazine is an online magazine covering international news, politics, technology, health, education, and much more.Read More.

Follow Us

Submit a News | Write For Us

Feel free to contact us for submission queries. via contact form or email us at : [email protected]

  • Home
  • About
  • Contact
  • Privacy
  • Terms
  • DCMA
  • Sitemap
  • Submit

© 2021 Regionalposts.com

No Result
View All Result
  • News
    • Sports
    • Politics
  • Business
    • Crypto
    • Marketing
  • Lifestyle
    • Entertainment
    • Fashion
    • Food
  • Tech
    • Gaming
    • Gadgets
  • Science
  • Health
  • Travel
  • World

© 2021 Regionalposts.com